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Optimal Estimation 
  The goal of optimal estimation is to determine the 

best estimate of the state of the system given a set 
of observations 
  Best implies minimum error 

  There are 3 general types of estimation problems 
that differ in terms of the available observations 
  Filtering: Determine the best estimate for the current 

point in time  
  Smoothing: Determine the best estimate for a point in 

time in the past 
  Prediction: Determine the best estimate for a point in time 

in the future 
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Probabilistic Reasoning  
Over Time 

  Stochastic processes can be represented in 
terms of conditional probabilities 
  State of the system at time t: st ∈ S 
  Observation of the system at time t: ot ∈ O 
  System model: P(st|st-1,ot,…o1,s0) 
  Observation model: P(ot|st,ot-1,…o1,s0) 

  Useful properties for stochastic processes 
  Stationarity – The process itself does not change 

over time 
  Markov – The state of the system depends only 

on a finite history (first order: only on the last 
state) 
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Dynamic Bayesian Networks 

  Stochastic processes that are Markov 
(any order) can be represented using 
Dynamic Bayesian Networks 
  Replicated networks for the state at 

different time steps 
  Connections between time copies encode 

transition probabilities 
  Connections from state-related notes to 

observation-related nodes represent the 
observation model 
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Bayesian Filtering 
  A Bayesian filter computes the posterior 

distribution of the state using the 
observations  
  Discrete case: 

  Continuous case: 
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Recursive Bayesian Filtering 
  If the process is Markov the recursive 

Bayesian filter can be derived  
  Discrete case: 

  Continuous case: 
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Recursive Bayesian Filtering 
  The recursive Bayesian filter can be broken 

into two phases 
  Prediction:  

  Measurement: 
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Recursive Bayesian Filtering 
  Benefits of a Bayesian filter 

  Optimal estimates 
  No assumptions about distributions 
  Uniform framework 

  Problems of the filter 
  Often computationally intractable 
  Integral might not be analytically solvable 
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Kalman Filter 
  The Kalman filter is a special case of the 

recursive Bayesian filter for the following 
assumptions: 
  The system and observation model are linear 

  The prior distribution and the uncertainty in the 
system and observation models are Gaussian 
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Kalman Filter 
  The Kalman filter estimates the posterior 

distribution in terms of the mean and the 
Covariance matrix  

  The posterior distribution is a Gaussian 
distribution (maintaining the first two moments  
of the distribution) 
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  The discrete Kalman filter is a special version 
of the recursive Bayesian filter 
  Prediction:  

  Measurement: 

Discrete Kalman Filter 
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  The Kalman gain Kt is the weight term that 
minimizes the expected squared difference 
between the estimate and the true state. 
  Derivation of Kt for a simple example: 

  The state is one-dimensional: st∈ℜ, Pt=σt
2 

  The process is stationary: A = 1, Q=0 
  The system directly observes the state: H=1, R= σo

2 

  The prior distribution is Normal with a mean of s0 and a 
variance of P0 

 Since the system is linear and all distributions are 
Gaussian, the resulting posterior distribution 
after every recursive step is a Gaussian with 
mean      and variance Pt 

The Kalman Gain –  
Example Derivation 
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  Prediction: 
  The process is stationary and there is no 

uncertainty added at every step: 

  Measurement: 
  Since both distributions are Gaussian: 

The Kalman Gain –  
Example Derivation 
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The Kalman Gain –  
Example Derivation 

  The true state st is related to the estimate as in: 

  Using this, the goal is to find the gains K1 and K2 that minimize 

the expected value of the squared posterior error,          .   

  Since the observation is directly of the state: 
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The Kalman Gain –  
Example Derivation 

  In order for the estimated posterior to be unbiased, the expected 
value of the error has to be 0: 

  Given this, the expected value of the posterior error is: 

  Since the state and observation errors are both b-mean and 
independently distributed: 

  To minimize this we set the derivative to 0 : 
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  The discrete Kalman filter provides the 
optimal estimate for the posterior probability 
distribution given the conditions are met.  
  Always converges to the optimal estimate 

  The best estimate for the next state is usually 
extracted as the mean of the distribution as it 
minimizes multiple error metrics, e.g.: 

  Maximum likelihood estimate 

  Minimum squared error estimate 

Discrete Kalman Filter 
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  The Extended Kalman Filter (EKF) relaxes 
the requirement on linear models 
  Uses the Jacobian matrix as a locally linear 

approximation of the function. 

  Note: The EKF does not always converge to the 
correct solution 

The Extended Kalman Filter 
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  Kalman filters give optimal estimates for 
cases where the distributions for the 
estimates and the observations are Gaussian 
  Advantages 

  Optimal estimates 

  Fast filter updates: O(1) 

  Disadvantages 
  Only normal distributions (i.e. only unimodal estimates) 

  EKF has no optimal convergence guarantees 

Kalman Filters 
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  Approximate filters for non-Gaussian 
scenarios can be created by discretizing the 
state space for the distribution 
  Complexity: O(n2) : n = number of state 

partitions 

Discretized Bayesian Filters 



© Manfred Huber 2005 21 

  General distributions can be approximated 
using a set of weighted samples,          , 
drawn at random from the distribution 
  Samples represent an empirical density function 

  If the samples are drawn from everywhere in the 
distribution and if the weight is set appropriately 

Sampling-Based Filters 
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  Monte Carlo Sampling from the distribution 
p(s) produces a sample distribution pN(s) that 
approximates p(s) where every sample has a 
weight of 1/N 
  Samples (“Particles”) can approximately 

represent any distribution in a finite amount of 
memory 

Sampling-Based Filters 
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  Sequential Monte Carlo Filters (Particle 
filters) are a version of the recursive 
Bayesian filter that uses samples to 
represent the distribution 
  Prediction:  

  Measurement: 

Sequential Monte Carlo Filters 
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  The basic filter can lead to a degenerate 
distribution (samples have very uneven 
weights) 

  A lot of memory might be spent on samples (particles) 
with weights close to 0. 

  Loss of quality in the approximation 

  Resampling after each iteration 

Sequential Monte Carlo Filters 
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  Particle filters do not impose any limitations 
on the distributions or process models used 
  Advantages: 

  Arbitrary distributions 
  Arbitrary models 
  Controllable complexity:  O(N) 

  Disadvantages: 
  Only approximate distribution 
  No obvious estimate (this is a problem with all general 

distribution estimators) 
  Maximum likelihood ? 
  Minimum squared error ? 
  Highest likelihood region ? 

Sequential Monte Carlo Filters 
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  Different estimators for different problems 
  General Bayesian filter 

  For discrete problems with small state spaces 
  Kalman filters 

  Fast estimators 
  Assumes Gaussian distributions 
  Only suitable for unimodal distributions 

  Discretization 
  For state spaces that form a small number of partitions 
  Only approximate solution  
  Might violate Markov property 

  Particle filters 
  Represents arbitrary processes and distributions 
  Only approximate solution 
  Number of particles (samples) effects precision 

Optimal Estimation 


