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Optimal Estimation

= The goal of optimal estimation is to determine the
best estimate of the state of the system given a set
of observations
= Best implies minimum error

= There are 3 general types of estimation problems
that differ in terms of the available observations

= Filtering: Determine the best estimate for the current
point in time

= Smoothing: Determine the best estimate for a point in
time in the past

= Prediction: Determine the best estimate for a point in time
in the future
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Probabilistic Reasoning
Over Time

4

= Stochastic processes can be represented in
terms of conditional probabilities

= State of the system at time ¢: 5, &S
= Observation of the system at time 7: 0, €0
= System model: P(s)|s, ,0,...0,,5,)
= Observation model: P(o/|s,0, ,,...0,5,)
= Useful properties for stochastic processes

= Stationarity — The process itself does not change
over time

=« Markov — The state of the system depends only
on a ;inite history (first order: only on the last
state
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i Dynamic Bayesian Networks

= Stochastic processes that are Markov
(any order) can be represented using
Dynamic Bayesian Networks

= Replicated networks for the state at
different time steps

=« Connections between time copies encode
transition probabilities

= Connections from state-related notes to
observation-related nodes represent the
observation model
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i Bayesian Filtering

= A Bayesian filter computes the posterior
distribution of the state using the
observations

= Discrete case:

P(s,|0,,0, ,..,0,) = P(o,|s,,0, ,....0)P(s, |0, _,,...,0,)
P(o,o0,_,...,0,)
= Continuous case:
po |s.,o_,..,0)p(s o._.,..,0)
p(St |0t’01—19"'901) = 4 12711 1 t -1 1
p(oz |Ot_1 aaaaa 01)
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Bayesian Filtering

= A Bayesian filter computes the posterior
distribution of the state using the
observations

= Discrete case:

P(o,|s,,o, ,....,0)P(s, |o,,,..,0
P(S,|0t901_19--->01)= ( t| 1>t-1%"""> l) (t| =192 1)
P(o, |0, ,...,0,)
P(o, |s,,0,_1,...,01)ESt_1 P(s,|8,_1,0, 15 0)P(S,_, |0, 5...0,)
ESH P(o,|5,.,0, 15,0 P(s,_/ | 0,_5...,0)
= Continuous case:
(o,]s,,0,_,...,0,)p(s, |0, ,...,0,)
p(St|0t’0t—l"“’01)=p 18,50, 15,0 P(S, [0, 550,
p(o, o, ,...,0,)
p(o, |S1901—1>---901)j: lp(Sz 8,250,150 P(S,_ | 0,_y5.050,) S,
—_ Ct-
j; p(ot |St—1,01—1""’01)p(st—1 |0t—1 °°°°° 0, )dst—l
t-1
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i Recursive Bayesian Filtering

= If the process is Markov the recursive
Bayesian filter can be derived

= Discrete case.
P(o, |s,,0,_1,...,01)ES’71 P(s, |8,1,0,_15s0)P(S,, |0, {5...50))
ESH P(o,|s,.,0,_...,0)P(s,_ | 0,_,...,0,)
P(o, |S,)251_l P(s, |s,.)P(s,|0,_,...,0.)
B ESH P(o,|s,_)P(s,_ |0, ,..,0,)

P(s, |o,,0, ,...,0,) =

=a P(o, ’SI)ESH P(s, |5, )PS5 10, 15e,0)

= Continuous case:

p(ot | St’ot—l""’ol)j; p(st | St—l’Ot—l""’Ol)p(st—l | Ol—l""’ol)dst—l
-1

p(Sl |01’Ol—1""’01) =
j: p(o, |St—1,01—1""’01)p(st—1 |0,_5+-,0,)ds, |
Si-1

p(o, |St)j;_1 ps, s, )p(s, 10,550 ds,_
ﬁ_l p(o, s, )p(s,. 10,505,

=a p(oz | Sz)j;_l p(S, | S )p(sr—l | 0,_1,...,01)dSt_1
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i Recursive Bayesian Filtering

= The recursive Bayesian filter can be broken
into two phases

= Prediction:
p(s, o, ,...,0)) =»£_1 p(s, | s,.)p(s,, |0t—19"‘701)dSt—1
= Measurement:

p(o,|s,)

P(0,10,_1:110,)

p(s, |o,,0,_,..,0/)= p(s, |o,_s...,0,)
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i Recursive Bayesian Filtering

= Benefits of a Bayesian filter
= Optimal estimates
= No assumptions about distributions
=« Uniform framework

= Problems of the filter
« Often computationally intractable
= Integral might not be analytically solvable
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Kalman Filter

4

= The Kalman filter is a special case of the
recursive Bayesian filter for the following
assumptions:
= The system and observation model are linear
s, =As,_ +w,
o, =Hs +v,
= The prior distribution and the uncertainty in the
system and observation models are Gaussian
w, ~N(0,0)
v, ~N(0,R)
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Kalman Filter

4

= The Kalman filter estimates the posterior
distribution in terms of the mean and the
Covariance matrix

- E[s,]
E[(St - §t)(St - §t)T]

= The posterior distribution is a Gaussian
distribution (maintaining the first two moments
of the distribution)

St
g
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i Discrete Kalman Filter

= The discrete Kalman filter is a special version
of the recursive Bayesian filter

= Prediction:
ST =AS,
P =AP_A" +0

= Measurement:
§ =5 +K, (o, - HS)
K =P H' (HPH" +R)"
B =(U-KH)F
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The Kalman Gain —
Example Derivation

= The Kalman gain K, is the weight term that
minimizes the expected squared difference
between the estimate and the true state.

= Derivation of K, for a simple example:
= The state is one-dimensional: s,&, P.=07
= The process is stationary: 4 = 1, 0=0
= The system directly observes the state: H=1, R= o

= The prior distribution is Normal with a mean of s, and a
variance of P,

Since the system is linear and all distributions are
Gaussian, the resulting posterior distribution
after every recursive step is a Gaussian with
mean §, and variance P,
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The Kalman Gain —
Example Derivation

+

= Prediction:

= The process is stationary and there is no
uncertainty added at every step:

S, =8,

4

P =P

4 -1

= Measurement:
= Since both distributions are Gaussian:

s, =E[s,1=K,s, +K,o,
})t = E[(§t _St)z]
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The Kalman Gain —
Example Derivation

= The true state s, is related to the estimate as in:
s, =s +e, , E[e]=P
§t_ =5, +ét_ > E[ét_]=])t_
= Using this, the goal is to find the gains K, and K, that minimize
the expected value of the squared posterior error, £[&] .
ét = §t =8 = (K1§t_ + Kzot) =8, = Kl(st + ét_) + K20z =S,
= Since the observation is directly of the state:

0,=S5,+¢,

=

e, =K, (s, +e )+K,(s, +e)-s, =s5(K,+K,-1)+Ke, +K,e,
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The Kalman Gain —
Example Derivation

= In order for the estimated posterior to be unbiased, the expected
value of the error has to be 0:

Ele]=Els,(K,+K,-1)+Ke, +K,e, ]=5,(K,+K,-1)=0
= K, =1-K,
= Given this, the expected value of the posterior error is:
E[étz] = E[(Klét_ + (1 _Kl)eo)z] = E[Klzéziz + (1 _Kl)zej + 2K1(1 _Kl)ét_eo]

= Since the state and observation errors are both »-mean and
independently distributed:

E[6’]= E[K?¢ "1+ E[(1-K,) e’ ] = K?E[¢-"1+(1- K, E[e’ ] = K’ P~ +(1-K,)’ 0"

= 10 minimize this we set the derivative to 0 :

A2
9B ok P4 2(1-K)(=1)07 = K, (2P +20°) =207 20
1
o’ o’ P o P\ o’P”
= K=—2"— , §=—_§+—" 0o , P=E[e]= o P+ d o) = —o!
' P40 " P +o’ ' P +o ! =l ( ,‘+002) ! (Pt‘+of) ? “+0
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i Discrete Kalman Filter

= The discrete Kalman filter provides the

optimal estimate for the posterior probability
distribution given the conditions are met.

= Always converges to the optimal estimate

= The best estimate for the next state is usually
extracted as the mean of the distribution as it
minimizes multiple error metrics, e.q.:
= Maximum likelihood estimate
= Minimum squared error estimate
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& The Extended Kalman Filter

= [he Extended Kalman Filter (EKF) relaxes
the requirement on linear models

= Uses the Jacobian matrix as a locally linear
approximation of the function.

= Note: The EKF does not always converge to the
correct solution
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Kalman Filters

= Kalman filters give optimal estimates for
cases where the distributions for the
estimates and the observations are Gaussian

= Advantages
= Optimal estimates
= Fast filter updates: O(1)

» Disadvantages
= Only normal distributions (i.e. only unimodal estimates)
= EKF has no optimal convergence guarantees
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i Discretized Bayesian Filters

= Approximate filters for non-Gaussian
scenarios can be created by discretizing the
state space for the distribution

= Complexity: O?) : n = number of state
partitions
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i Sampling-Based Filters

= General distributions can be approximated
using a set of weighted samples, "%},
drawn at random from the distribution
= Samples represent an empirical density function
Py(s) =" w8 ., (s)

« If the samples are drawn from everywhere in the
distribution and if the weight is set appropriately

fp(S)dS "'pr(S)dS ESf )e[sl,ss]w(])
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i Sampling-Based Filters

= Monte Carlo Sampling from the distribution
p(s) produces a sample distribution p,(s) that
approximates p(s) where every sample has a
weight of I/N

= Samples (“Particles”) can approximately
represent any distribution in a finite amount of
memory
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i Sequential Monte Carlo Filters

= Sequential Monte Carlo Filters (Particle
filters) are a version of the recursive
Bayesian filter that uses samples to
represent the distribution
= Prediction:

50wOY 2 50~ p(s, |5)

= Measurement:
~(i i i ~ N
57w w =aw’ plo, |57),0 = E r w) p(o,|5")
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i Sequential Monte Carlo Filters

= The basic filter can lead to a degenerate
distribution (samples have very uneven
weights)

= A lot of memory might be spent on samples (particles)
with weights close to 0.

= Loss of quality in the approximation
= Resampling after each iteration

. . . . . ]
(i) ) . o) (i) —~ (i)
{s,”,w’ s ~w ow =—
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‘_L Sequential Monte Carlo Filters

= Particle filters do not impose any limitations
on the distributions or process models used

= Advantages:
= Arbitrary distributions
= Arbitrary models
= Controllable complexity: O(N)

« Disadvantages:
= Only approximate distribution
= No obvious estimate (this is a problem with all general
distribution estimators)
Maximum likelihood ?
Minimum squared error ?

Highest likelihood region ?
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Optimal Estimation

= Different estimators for different problems

= General Bayesian filter
= For discrete problems with small state spaces

= Kalman filters
« Fast estimators
« Assumes Gaussian distributions
= Only suitable for unimodal distributions

= Discretization
= For state spaces that form a small number of partitions
= Only approximate solution
= Might violate Markov property
« Particle filters
= Represents arbitrary processes and distributions
= Only approximate solution
= Number of particles (samples) effects precision
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