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Optimal Estimation 
  The goal of optimal estimation is to determine the 

best estimate of the state of the system given a set 
of observations 
  Best implies minimum error 

  There are 3 general types of estimation problems 
that differ in terms of the available observations 
  Filtering: Determine the best estimate for the current 

point in time  
  Smoothing: Determine the best estimate for a point in 

time in the past 
  Prediction: Determine the best estimate for a point in time 

in the future 
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Probabilistic Reasoning  
Over Time 

  Stochastic processes can be represented in 
terms of conditional probabilities 
  State of the system at time t: st ∈ S 
  Observation of the system at time t: ot ∈ O 
  System model: P(st|st-1,ot,…o1,s0) 
  Observation model: P(ot|st,ot-1,…o1,s0) 

  Useful properties for stochastic processes 
  Stationarity – The process itself does not change 

over time 
  Markov – The state of the system depends only 

on a finite history (first order: only on the last 
state) 
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Dynamic Bayesian Networks 

  Stochastic processes that are Markov 
(any order) can be represented using 
Dynamic Bayesian Networks 
  Replicated networks for the state at 

different time steps 
  Connections between time copies encode 

transition probabilities 
  Connections from state-related notes to 

observation-related nodes represent the 
observation model 
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Bayesian Filtering 
  A Bayesian filter computes the posterior 

distribution of the state using the 
observations  
  Discrete case: 

  Continuous case: 
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Recursive Bayesian Filtering 
  If the process is Markov the recursive 

Bayesian filter can be derived  
  Discrete case: 

  Continuous case: 
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Recursive Bayesian Filtering 
  The recursive Bayesian filter can be broken 

into two phases 
  Prediction:  

  Measurement: 
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Recursive Bayesian Filtering 
  Benefits of a Bayesian filter 

  Optimal estimates 
  No assumptions about distributions 
  Uniform framework 

  Problems of the filter 
  Often computationally intractable 
  Integral might not be analytically solvable 
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Kalman Filter 
  The Kalman filter is a special case of the 

recursive Bayesian filter for the following 
assumptions: 
  The system and observation model are linear 

  The prior distribution and the uncertainty in the 
system and observation models are Gaussian 
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Kalman Filter 
  The Kalman filter estimates the posterior 

distribution in terms of the mean and the 
Covariance matrix  

  The posterior distribution is a Gaussian 
distribution (maintaining the first two moments  
of the distribution) 
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  The discrete Kalman filter is a special version 
of the recursive Bayesian filter 
  Prediction:  

  Measurement: 

Discrete Kalman Filter 
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  The Kalman gain Kt is the weight term that 
minimizes the expected squared difference 
between the estimate and the true state. 
  Derivation of Kt for a simple example: 

  The state is one-dimensional: st∈ℜ, Pt=σt
2 

  The process is stationary: A = 1, Q=0 
  The system directly observes the state: H=1, R= σo

2 

  The prior distribution is Normal with a mean of s0 and a 
variance of P0 

 Since the system is linear and all distributions are 
Gaussian, the resulting posterior distribution 
after every recursive step is a Gaussian with 
mean      and variance Pt 

The Kalman Gain –  
Example Derivation 
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  Prediction: 
  The process is stationary and there is no 

uncertainty added at every step: 

  Measurement: 
  Since both distributions are Gaussian: 

The Kalman Gain –  
Example Derivation 
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The Kalman Gain –  
Example Derivation 

  The true state st is related to the estimate as in: 

  Using this, the goal is to find the gains K1 and K2 that minimize 

the expected value of the squared posterior error,          .   

  Since the observation is directly of the state: 
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The Kalman Gain –  
Example Derivation 

  In order for the estimated posterior to be unbiased, the expected 
value of the error has to be 0: 

  Given this, the expected value of the posterior error is: 

  Since the state and observation errors are both b-mean and 
independently distributed: 

  To minimize this we set the derivative to 0 : 
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  The discrete Kalman filter provides the 
optimal estimate for the posterior probability 
distribution given the conditions are met.  
  Always converges to the optimal estimate 

  The best estimate for the next state is usually 
extracted as the mean of the distribution as it 
minimizes multiple error metrics, e.g.: 

  Maximum likelihood estimate 

  Minimum squared error estimate 

Discrete Kalman Filter 
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  The Extended Kalman Filter (EKF) relaxes 
the requirement on linear models 
  Uses the Jacobian matrix as a locally linear 

approximation of the function. 

  Note: The EKF does not always converge to the 
correct solution 

The Extended Kalman Filter 
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  Kalman filters give optimal estimates for 
cases where the distributions for the 
estimates and the observations are Gaussian 
  Advantages 

  Optimal estimates 

  Fast filter updates: O(1) 

  Disadvantages 
  Only normal distributions (i.e. only unimodal estimates) 

  EKF has no optimal convergence guarantees 

Kalman Filters 
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  Approximate filters for non-Gaussian 
scenarios can be created by discretizing the 
state space for the distribution 
  Complexity: O(n2) : n = number of state 

partitions 

Discretized Bayesian Filters 
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  General distributions can be approximated 
using a set of weighted samples,          , 
drawn at random from the distribution 
  Samples represent an empirical density function 

  If the samples are drawn from everywhere in the 
distribution and if the weight is set appropriately 

Sampling-Based Filters 
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  Monte Carlo Sampling from the distribution 
p(s) produces a sample distribution pN(s) that 
approximates p(s) where every sample has a 
weight of 1/N 
  Samples (“Particles”) can approximately 

represent any distribution in a finite amount of 
memory 

Sampling-Based Filters 
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  Sequential Monte Carlo Filters (Particle 
filters) are a version of the recursive 
Bayesian filter that uses samples to 
represent the distribution 
  Prediction:  

  Measurement: 

Sequential Monte Carlo Filters 
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  The basic filter can lead to a degenerate 
distribution (samples have very uneven 
weights) 

  A lot of memory might be spent on samples (particles) 
with weights close to 0. 

  Loss of quality in the approximation 

  Resampling after each iteration 

Sequential Monte Carlo Filters 
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  Particle filters do not impose any limitations 
on the distributions or process models used 
  Advantages: 

  Arbitrary distributions 
  Arbitrary models 
  Controllable complexity:  O(N) 

  Disadvantages: 
  Only approximate distribution 
  No obvious estimate (this is a problem with all general 

distribution estimators) 
  Maximum likelihood ? 
  Minimum squared error ? 
  Highest likelihood region ? 

Sequential Monte Carlo Filters 
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  Different estimators for different problems 
  General Bayesian filter 

  For discrete problems with small state spaces 
  Kalman filters 

  Fast estimators 
  Assumes Gaussian distributions 
  Only suitable for unimodal distributions 

  Discretization 
  For state spaces that form a small number of partitions 
  Only approximate solution  
  Might violate Markov property 

  Particle filters 
  Represents arbitrary processes and distributions 
  Only approximate solution 
  Number of particles (samples) effects precision 

Optimal Estimation 


